Com trobar el domini i el rang de funcions: 14 passos (amb imatges)

Taula de continguts:

Com trobar el domini i el rang de funcions: 14 passos (amb imatges)
Com trobar el domini i el rang de funcions: 14 passos (amb imatges)

Vídeo: Com trobar el domini i el rang de funcions: 14 passos (amb imatges)

Vídeo: Com trobar el domini i el rang de funcions: 14 passos (amb imatges)
Vídeo: VOLUMEN DE UN PRISMA TRIANGULAR Super facil - Para principiantes 2024, De novembre
Anonim

Cada funció té dues variables, és a dir, la variable independent i la variable dependent. Literalment, el valor de la variable dependent "depèn" de la variable independent. Per exemple, a la funció y = f (x) = 2 x + y, x és la variable independent i y és la variable dependent (en altres paraules, y és una funció de x). Els valors vàlids de la variable coneguda x s'anomenen "dominis d'origen". Els valors vàlids de la variable y coneguda s’anomenen “rang de resultats”.

Pas

Part 1 de 3: Trobar el domini d'una funció

Cerqueu el domini i l'interval d'una funció Pas 1
Cerqueu el domini i l'interval d'una funció Pas 1

Pas 1. Decidiu quin tipus de funció realitzareu

El domini de la funció són tots els valors x (eix horitzontal) que retornaran valors y vàlids. L'equació de la funció pot ser una quadràtica, una fracció o contenir una arrel. Per calcular el domini de la funció, el primer que heu de fer és examinar les variables de l’equació.

  • Una funció quadràtica té la forma ax2 + bx + c: f (x) = 2x2 + 3x + 4
  • Alguns exemples de funcions amb fraccions inclouen: f (x) = (1/x), f (x) = (x + 1)/(x - 1), i altres.
  • Les funcions que tenen arrels inclouen: f (x) = x, f (x) = (x2 + 1), f (x) = -x, etc.
Cerqueu el domini i l’interval d’una funció Pas 2
Cerqueu el domini i l’interval d’una funció Pas 2

Pas 2. Escriviu el domini amb la notació adequada

Escriure el domini d’una funció implica utilitzar claudàtors [,] i claudàtors (,). Utilitzeu claudàtors [,] si el número pertany al domini i utilitzeu claudàtors (,) si el domini no inclou el número. La lletra U indica una unió que connecta parts del domini que poden estar separades per una distància.

  • Per exemple, el domini de [-2, 10) U (10, 2] inclou -2 i 2, però no inclou el número 10.
  • Utilitzeu sempre parèntesis () si utilitzeu el símbol infinit,.
Cerqueu el domini i l’interval d’una funció Pas 3
Cerqueu el domini i l’interval d’una funció Pas 3

Pas 3. Dibuixa un gràfic de l’equació de segon grau

Les equacions quadràtiques produeixen un gràfic parabòlic que s’obre cap amunt o cap avall. Tenint en compte que la paràbola continuarà infinita a l'eix de les x, el domini de la majoria de les equacions de segon grau són tots els nombres reals. Dit d'una altra manera, una equació de segon grau inclou tots els valors x de la línia numèrica, donant el domini R (símbol per a tots els nombres reals).

  • Per resoldre la funció, trieu qualsevol valor x i introduïu-lo a la funció. Si resoleu una funció amb un valor x, es tornarà un valor y. Els valors de x i y són les coordenades (x, y) d’un gràfic de la funció.
  • Representa aquestes coordenades en un gràfic i repeteix el procés amb un altre valor x.
  • El traçat d'alguns dels valors d'aquest model us proporcionarà una visió general de la forma de la funció quadràtica.
Cerqueu el domini i l’interval d’una funció Pas 4
Cerqueu el domini i l’interval d’una funció Pas 4

Pas 4. Si l’equació de la funció és una fracció, feu que el denominador sigui zero

Quan es treballa amb fraccions, mai es pot dividir per zero. En fer el denominador igual a zero i trobar el valor de x, podeu calcular els valors que s’extreuran de la funció.

  • Per exemple: Determineu el domini de la funció f (x) = (x + 1)/(x - 1).
  • El denominador de la funció és (x - 1).
  • Feu el denominador igual a zero i calculeu el valor de x: x - 1 = 0, x = 1.
  • Anoteu el domini: el domini de la funció no inclou 1, però inclou tots els nombres reals excepte 1; per tant, el domini és (-∞, 1) U (1,).
  • (-∞, 1) U (1,) es pot llegir com una col·lecció de tots els nombres reals excepte 1. El símbol de l'infinit, representa tots els nombres reals. En aquest cas, s’inclouen al domini tots els nombres reals superiors a 1 i menors a 1.
Cerqueu el domini i l’interval d’una funció Pas 5
Cerqueu el domini i l’interval d’una funció Pas 5

Pas 5. Si l’equació és una funció arrel, feu que les variables arrel siguin majors o iguals a zero

No podeu utilitzar l'arrel quadrada d'un nombre negatiu; per tant, qualsevol valor x que condueixi a un nombre negatiu s'ha d'eliminar del domini de la funció.

  • Per exemple: Cerqueu el domini de la funció f (x) = (x + 3).
  • Les variables de l'arrel són (x + 3).
  • Feu que el valor sigui superior o igual a zero: (x + 3) 0.
  • Calculeu el valor de x: x -3. Resol per x: x -3.
  • El domini de la funció inclou tots els nombres reals majors o iguals a -3; per tant, el domini és [-3,).

Part 2 de 3: Trobar l'abast d'una equació quadràtica

Cerqueu el domini i l’interval d’una funció Pas 6
Cerqueu el domini i l’interval d’una funció Pas 6

Pas 1. Assegureu-vos que teniu una funció quadràtica

La funció quadràtica té la forma ax2 + bx + c: f (x) = 2x2 + 3x + 4. La gràfica de la funció quadràtica és una paràbola que s’obre cap amunt o cap avall. Hi ha diferents maneres de calcular l'abast de la funció en funció del tipus de funció en què estigueu treballant.

La forma més senzilla de determinar l'abast d'altres funcions, com ara una funció arrel o una funció de fracció, és representar gràficament la funció mitjançant una calculadora gràfica

Cerqueu el domini i l’interval d’una funció Pas 7
Cerqueu el domini i l’interval d’una funció Pas 7

Pas 2. Cerqueu el valor x del vèrtex de la funció

El vèrtex d’una funció quadràtica és el vèrtex de la paràbola. Recordeu, la forma de la funció quadràtica és ax2 + bx + c. Per trobar la coordenada x utilitzeu l'equació x = -b / 2a. L’equació és una derivada d’una funció quadràtica bàsica que representa una equació amb pendent / pendent zero (al vèrtex del gràfic, el gradient de la funció és zero).

  • Per exemple, trobeu l'interval de 3x2 + 6x -2.
  • Calculeu la coordenada x del vèrtex: x = -b / 2a = -6 / (2 * 3) = -1
Cerqueu el domini i l’interval d’una funció Pas 8
Cerqueu el domini i l’interval d’una funció Pas 8

Pas 3. Calculeu el valor y del vèrtex de la funció

Connecteu la coordenada x a la funció per calcular el valor y corresponent del vèrtex. Aquest valor en y indica el límit del rang de la funció.

  • Calculeu la coordenada y: y = 3x2 + 6x - 2 = 3 (-1)2 + 6(-1) -2 = -5.
  • El vèrtex d’aquesta funció és (-1, -5).
Cerqueu el domini i l’interval d’una funció Pas 9
Cerqueu el domini i l’interval d’una funció Pas 9

Pas 4. Determineu la direcció de la paràbola endollant almenys un valor x més

Trieu qualsevol altre valor x i connecteu-lo a la funció per calcular el valor y adequat. Si el valor y està per sobre del vèrtex, la paràbola continua fins a + ∞. Si el valor y està per sota del vèrtex, la paràbola continuarà fins a -∞.

  • Utilitzeu el valor x -2: y = 3x2 + 6x - 2 = y = 3 (-2)2 + 6(-2) – 2 = 12 -12 -2 = -2.
  • Aquest càlcul retorna les coordenades (-2, -2).
  • Aquestes coordenades mostren que la paràbola continua per sobre del vèrtex (-1, -5); per tant, l'interval inclou tots els valors y superiors a -5.
  • El rang d'aquesta funció és [-5,).
Cerqueu el domini i l’interval d’una funció Pas 10
Cerqueu el domini i l’interval d’una funció Pas 10

Pas 5. Escriviu el rang amb la notació adequada

Igual que els dominis, els intervals s’escriuen amb la mateixa notació. Utilitzeu claudàtors [,] si el número està dins de l'interval i utilitzeu claudàtors (,) si l'interval no inclou el número. La lletra U indica una unió que connecta parts del rang que poden estar separades per una distància.

  • Per exemple, l'interval de [-2, 10) U (10, 2] inclou -2 i 2, però no inclou el número 10.
  • Utilitzeu sempre parèntesis si utilitzeu el símbol infinit,.

Part 3 de 3: Trobar l'abast a partir del gràfic d'una funció

Cerqueu el domini i l’interval d’una funció Pas 11
Cerqueu el domini i l’interval d’una funció Pas 11

Pas 1. Dibuixa la funció

Sovint, la forma més senzilla de determinar l'abast d'una funció és representar-la gràficament. Moltes funcions d'arrel tenen un rang (-∞, 0] o [0, + ∞) perquè el vèrtex de la paràbola horitzontal (paràbola lateral) es troba a l'eix x horitzontal. En aquest cas, la funció inclou tots els valors y positius si s’obre la paràbola o tots els valors y negatius si la paràbola s’obre cap avall. Les funcions fraccionàries tindran asímptotes (línies que mai no es tallen amb una línia recta / corba, sinó que s’acosten a l’infinit) que defineixen l’abast de la funció.

  • Algunes funcions arrel començaran per sobre o per sota de l'eix x. En aquest cas, l'interval està determinat pel nombre on s'inicia la funció arrel. Si la paràbola comença per y = -4 i puja, l'interval és [-4, + ∞).
  • La forma més senzilla de dibuixar una funció és fer servir un programa gràfic o una calculadora gràfica.
  • Si no teniu una calculadora gràfica, podeu dibuixar un esbós aproximat del gràfic connectant el valor x a la funció i obtenint el valor y adequat. Dibuixeu aquestes coordenades en un gràfic per fer-vos una idea de l’aspecte del gràfic.
Cerqueu el domini i l’interval d’una funció Pas 12
Cerqueu el domini i l’interval d’una funció Pas 12

Pas 2. Cerqueu el valor mínim de la funció

Immediatament després de dibuixar la funció, hauríeu de poder veure clarament el punt més baix del gràfic. Si no hi ha un valor mínim clar, sàpiga que algunes funcions continuaran a -∞ (infinit).

Una funció de fracció inclourà tots els punts excepte els de les assimptotes. La funció té un interval com (-∞, 6) U (6,)

Cerqueu el domini i l’interval d’una funció Pas 13
Cerqueu el domini i l’interval d’una funció Pas 13

Pas 3. Determineu el valor màxim de la funció

Una vegada més, després de dibuixar el gràfic, hauríeu de poder identificar el punt màxim de la funció. Algunes funcions continuaran a + ∞ i, per tant, no tindran un valor mínim.

Cerqueu el domini i l’interval d’una funció Pas 14
Cerqueu el domini i l’interval d’una funció Pas 14

Pas 4. Escriviu el rang amb la notació adequada

Igual que els dominis, els intervals s’escriuen amb la mateixa notació. Utilitzeu claudàtors [,] si el número està dins de l'interval i utilitzeu claudàtors (,) si l'interval no inclou el número. La lletra U indica una unió que connecta parts del rang que poden estar separades per una distància.

  • Per exemple, l'interval de [-2, 10) U (10, 2] inclou -2 i 2, però no inclou el número 10.
  • Utilitzeu sempre parèntesis si utilitzeu el símbol infinit,.

Recomanat: